ALGEBRA

1 $f(x) \equiv x^3 + x^2 - 22x - 40$.

- a Show that (x + 2) is a factor of f(x). (2)
- **b** Express f(x) as the product of three linear factors. (4)
- c Solve the equation f(x) = 0. (1)

2 $f(x) \equiv x^3 - 2x^2 + kx + 1$.

Given that the remainder when f(x) is divided by (x-2) and the remainder when f(x) is divided by (x+3) are equal,

- a find the value of the constant k, (4)
- **b** find the remainder when f(x) is divided by (x + 2). (2)
- 3 The polynomial p(x) is defined by

$$p(x) \equiv 2x^3 - 9x^2 - 2x + 11.$$

- a Find the remainder when p(x) is divided by (x + 2). (2)
- **b** Find the quotient and remainder when p(x) is divided by (x-4).

4 $y = x^3 - 5x^2 - 8x + 1$ $B \quad O \quad C \quad D \quad x$

The diagram shows the curve with the equation $y = x^3 - 5x^2 - 8x + 12$.

a State the coordinates of the point A where the curve crosses the y-axis. (1)

The curve crosses the x-axis at the points B, C and D. Given that C has coordinates (1, 0),

b find the coordinates of the points B and D. (6)

5 $f(x) \equiv x^3 - 3x^2 + kx + 8$.

Given that (x - 1) is a factor of f(x),

- \mathbf{a} find the value of k, (2)
- **b** solve the equation f(x) = 0. (5)
- **6** Solve the equation

$$2x^3 + x^2 - 13x + 6 = 0. (7)$$

7 The polynomial p(x) is defined by

$$p(x) \equiv bx^3 + ax^2 - 10x + b$$
,

where a and b are constants.

Given that when p(x) is divided by (x + 1) the remainder is 3,

$$\mathbf{a}$$
 find the value of a . (2)

Given also that when p(x) is divided by (3x - 1) the remainder is -1,

b find the value of
$$b$$
. (3)

ALGEBRA continued

8 $f(x) \equiv x^3 - 7x^2 + x + 10.$

- a Find the remainder when f(x) is divided by (x + 1). (2)
- **b** Hence, or otherwise, solve the equation f(x) = 1, giving your answers in exact form. (6)

9 $f(x) = 3x^3 + kx^2 - 7x + 2k.$

When f(x) is divided by (3x - 2) the remainder is 6.

Find the value of the constant k. (3)

10 $f(x) = 2x^3 - 7x^2 + 4x - 3.$

- a Show that (x-3) is a factor of f(x). (2)
- **b** Hence, express f(x) as the product of a linear factor and a quadratic factor. (3)
- c Show that there is only one real solution to the equation f(x) = 0. (3)
- 11 The polynomial f(x) is defined by

$$f(x) \equiv x^3 + px + q,$$

where p and q are constants.

Given that (x - 2) is a factor of f(x),

a find an expression for q in terms of p. (2)

Given also that when f(x) is divided by (x + 1) the remainder is -15,

b find the values of p and q. (4)

12 $f(x) \equiv x^3 + 4x^2 - 9.$

Given that x = -3 is a solution to the equation f(x) = 0, find the other two solutions correct to 2 decimal places. (6)

13 $f(x) = (x+k)^3 - 8.$

Given that when f(x) is divided by (x + 2) the remainder is -7,

- a find the value of the constant k, (3)
- **b** show that (x + 1) is a factor of f(x). (2)
- 14 $f(x) \equiv x^3 4x^2 7x + 8$.

a Find the remainder when f(x) is divided by (x + 2).

Given that

$$g(x) \equiv f(x) + c$$

and that (x + 2) is a factor of g(x),

b state the value of the constant c, (1)

c solve the equation g(x) = 0. (4)

15 $f(x) \equiv x^3 - 4x + 1.$

Given that when f(x) is divded by (2x - k), where k is a constant, the remainder is 4,

a show that $k^3 - 16k - 24 = 0$. (3)

Given also that when f(x) is divided by (x + k) the remainder is 1,

b find the value of k. (3)